首页> 外文OA文献 >Generalized thresholding and online sparsity-aware learning in a union of subspaces
【2h】

Generalized thresholding and online sparsity-aware learning in a union of subspaces

机译:子空间联合中的广义阈值和在线稀疏感知学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper considers a sparse signal recovery task in time-varying (time-adaptive) environments. The contribution of the paper to sparsity-aware online learning is threefold; first, a generalized thresholding (GT) operator, which relates to both convex and non-convex penalty functions, is introduced. This operator embodies, in a unified way, the majority of well-known thresholding rules which promote sparsity. Second, a non-convexly constrained, sparsity-promoting, online learning scheme, namely the adaptive projection-based generalized thresholding (APGT), is developed that incorporates the GT operator with a computational complexity that scales linearly to the number of unknowns. Third, the novel family of partially quasi-nonexpansive mappings is introduced as a functional analytic tool for treating the GT operator. By building upon the rich fixed point theory, the previous class of mappings establishes also a link between the GT operator and a union of linear subspaces; a non-convex object which lies at the heart of any sparsity promoting technique, batch or online. Based on this functional analytic framework, a convergence analysis of the APGT is provided. Extensive experiments suggest that the APGT exhibits competitive performance when compared to computationally more demanding alternatives, such as the sparsity-promoting affine projection algorithm (APA)- and recursive least-squares (RLS)-based techniques.
机译:本文考虑了时变(时间自适应)环境中的稀疏信号恢复任务。本文对稀疏感知在线学习的贡献是三方面的;首先,介绍了与凸和非凸罚函数都相关的广义阈值运算符。该运算符以统一的方式体现了促进稀疏性的大多数知名阈值规则。其次,开发了一种非凸约束的,促进稀疏性的在线学习方案,即基于自适应投影的广义阈值化(APGT),该方案结合了GT运算符,其计算复杂度可线性扩展至未知数。第三,引入了部分准非扩张映射的新族作为用于处理GT算子的功能分析工具。通过丰富的不动点理论,上一类映射还在GT运算符和线性子空间的并集之间建立了联系。一个非凸对象,位于批量或在线稀疏性促进技术的核心。基于此功能分析框架,提供了APGT的收敛性分析。大量实验表明,与计算要求更高的替代方案(例如基于稀疏促进仿射投影算法(APA)和递归最小二乘(RLS)的技术)相比,APGT具有竞争优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号